The intersection of nonstandard models of arithmetic

Author:

Blass Andreas

Abstract

If two nonstandard models of complete arithmetic are elementarily embedded in a third, then their intersection may be considerably smaller than either of them; indeed, the intersection may be only the standard model. For example, if D and E are nonprincipal ultrafilters on ω, then the nonstandard models D-prod and E-prod (where is the standard model) have canonical elementary embeddings into D-prod (E-prod , and the intersection of their images is easily seen to be the (canonical image of the) standard model. In this paper, we shall prove that, under certain conditions, this phenomenon will not occur. Our main result (Theorem 3) is that the intersection of countably many pairwise cofinal models is itself cofinal with these models, provided that at least one of them is generated by a single element. (Precise definitions will be given below.)The theorems in this paper were first formulated in terms of ultrafilters, then rephrased (using the methods of Chapter III of [1]) as statements about ultra-powers of , and finally generalized to their present form. Since the theorems and their proofs are now entirely model-theoretic, they are presented here separately from the study of ultrafilters in which they originated. That study, including applications of the present results, will appear in [2].Let L be the first-order language whose n-place relation symbols are all the relations R ⊆; ωn and whose n-place function symbols are all the functions f: ωnω. Let be the standard model for L; its universe is ω and every nonlogical symbol of L denotes itself. Let be an elementary extension of . The relation (or function) denoted by R (or f) in will be called *R (or *f).

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference3 articles.

1. Ultrafilters on a countable set

2. Blass A. , The Rudin-Keisler ordering of P-points (to appear).

3. Blass A. , Orderings of ultrafilters, Thesis, Harvard University, 1970.

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3