Abstract
AbstractGiven an abstract logic , generated by a set of quantifiers Qi, one can construct for each type τ a topological space Sτ, exactly as one constructs the Stone space for τ in first-order logic. Letting T be an arbitrary directed set of types, the set is an inverse topological system whose bonding mappings are naturally determined by the reduct operation on structures. We relate the compactness of to the topological properties of ST. For example, if I is countable then is compact iff for every τ each clopen subset of Sτ is of finite type and Sτ, is homeomorphic to limST, where T is the set of finite subtypes of τ. We finally apply our results to concrete logics.
Publisher
Cambridge University Press (CUP)
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献