Omitting types: application to recursion theory

Author:

Grilliot Thomas J.

Abstract

Omitting-types theorems have been useful in model theory to construct models with special characteristics. For instance, one method of proving the ω-completeness theorem of Henkin [10] and Orey [20] involves constructing a model that omits the type {x ≠ 0, x ≠ 1, x ≠ 2,···} (i.e., {x ≠ 0, x ≠ 1, x ≠ 2,···} is not satisfiable in the model). Our purpose in this paper is to illustrate uses of omitting-types theorems in recursion theory. The Gandy-Kreisel-Tait Theorem [7] is the most well-known example. This theorem characterizes the class of hyperarithmetical sets as the intersection of all ω-models of analysis (the so-called hard core of analysis). The usual way to prove that a nonhyperarithmetical set does not belong to the hard core is to construct an ω-model of analysis that omits the type representing the set (Application 1). We will find basis results for and s sets that are stronger than results previously known (Applications 2 and 3). The question of how far the natural hierarchy of hyperjumps extends was first settled by a forcing argument (Sacks) and subsequently by a compactness argument (Kripke, Richter). Another problem solved by a forcing argument (Sacks) and then by a compactness argument (Friedman-Jensen) was the characterization of the countable admissible ordinals as the relativized ω1's. Using omitting-types technique, we will supply a third kind of proof of these results (Applications 4 and 5). S. Simpson made a significant contribution in simplifying the proof of the latter result, with the interesting side effect that Friedman's result on ordinals in models of set theory is immediate (Application 6). One approach to abstract recursiveness and hyperarithmeticity on a countable set is to tenuously identify the set with the natural numbers. This approach is equivalent to other approaches to abstract recursion (Application 7). This last result may also be proved by a forcing method.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference23 articles.

1. Predicates recursive in a type-2 object and Kleene hierarchies;Tugué;Commentarii Mathematici Universitatis Sancti Pauli,1959

2. Sacks G. E. , Countable admissible ordinals and hyperdegrees, to appear.

3. Constructive transfinite number classes

4. The Suslin-Kleene theorem for countable structures

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An algorithmic approach to characterizations of admissibles;Computing with Foresight and Industry;2019

2. Bounds on Weak Scattering;Notre Dame Journal of Formal Logic;2007-01-01

3. Intrinsically Hyperarithmetical Sets;Mathematical Logic Quarterly;1996

4. Intrinsically II11 Relations;Mathematical Logic Quarterly;1996

5. Forcing and reducibilities. III. Forcing in fragments of set theory;Journal of Symbolic Logic;1983-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3