Abstract
In the first part of this paper, we will consider a class of Markov chains on the non-negative integers which resemble the Galton-Watson branching process, but with one major difference. If there are k individuals in the nth “generation”, and are independent random variables representing their respective numbers of offspring, then the (n + 1)th generation will contain max individuals rather than as in the branching case. Equivalently, the transition matrices Pij of the chains we will study are to be of the form
where F(.) is the probability distribution function of a non-negative, integervalued random variable. The right-hand side of (1) is thus the probability that the maximum of i independent random variables distributed by F has the value j. Such a chain will be called a “maximal branching process”.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献