1-genericity in the enumeration degrees

Author:

Copestake Kate

Abstract

The structure of the Turing degrees of generic and n-generic sets has been studied fairly extensively, especially for n = 1 and n = 2. The original formulation of 1-generic set in terms of recursively enumerable sets of strings is due to D. Posner [11], and much work has since been done, particularly by C. G. Jockusch and C. T. Chong (see [5] and [6]).In the enumeration degrees (see definition below), attention has previously been restricted to generic sets and functions. J. Case used genericity for many of the results in his thesis [1]. In this paper we develop a notion of 1-generic partial function, and study the structure and characteristics of such functions in the enumeration degrees. We find that the e-degree of a 1-generic function is quasi-minimal. However, there are no e-degrees minimal in the 1-generic e-degrees, since if a 1-generic function is recursively split into finitely or infinitely many parts the resulting functions are e-independent (in the sense defined by K. McEvoy [8]) and 1-generic. This result also shows that any recursively enumerable partial ordering can be embedded below any 1-generic degree.Many results in the Turing degrees have direct parallels in the enumeration degrees. Applying the minimal Turing degree construction to the partial degrees (the e-degrees of partial functions) produces a total partial degree ae which is minimal-like; that is, all functions in degrees below ae have partial recursive extensions.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference13 articles.

1. Haught C. , Turing and truth table degrees of 1-generic and recursively enumerable sets, Ph. D. thesis, Cornell University, Ithaca, New York, 1985.

2. Some applications of the notions of forcing and generic sets

3. Posner D. , High degrees, Ph. D. thesis, University of California, Berkeley, California, 1977.

4. Degrees of Generic Sets

Cited by 17 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Comparing the degrees of enumerability and the closed Medvedev degrees;Archive for Mathematical Logic;2018-09-28

2. Enumeration 1-Genericity in the Local Enumeration Degrees;Notre Dame Journal of Formal Logic;2018-01-01

3. A note on the enumeration degrees of 1-generic sets;Archive for Mathematical Logic;2015-12-12

4. Quasi-minimal degrees for degree spectra;Journal of Logic and Computation;2013-09-12

5. A Note on ω-Jump Inversion of Degree Spectra of Structures;Lecture Notes in Computer Science;2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3