Author:
Cooper Robert B.,Tilt Borge
Abstract
Takács has shown that, in the M/G/1 queue, the probability P(k | i) that the maximum number of customers present simultaneously during a busy period that begins with i customers present is P(k | i) = Qk–i/Qk, where the Q's are easily calculated by recurrence in terms of an arbitrary Q0 ≠ 0. We augment Takács's theorem by showing that P(k | i) = bk–i/bk, where bn is the mean busy period in the M/G/1 queue with finite waiting room of size n; that is, if we take Q0 equal to the mean service time, then Qn =bn.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献