A hierarchy of maps between compacta

Author:

Bankston Paul

Abstract

AbstractLet CH be the class of compacta (i.e., compact Hausdorff spaces), with BS the subclass of Boolean spaces. For each ordinal α and pair (K, L) of subclasses of CH, we define Lev≥α(K, L), the class of maps of level at least α from spaces in K to spaces in L, in such a way that, for finite α, Lev≥α(BS, BS) consists of the Stone duals of Boolean lattice embeddings that preserve all prenex first-order formulas of quantifier rank α. Maps of level ≥ 0 are just the continuous surjections, and the maps of level ≥ 1 are the co-existential maps introduced in [8]. Co-elementary maps are of level ≥ω a for all ordinals α: of course in the Boolean context, the co-elementary maps coincide with the maps of level ≥ ω. The results of this paper include:(i) every map of level ≥ ωis co-elementary;(ii) the limit maps of an co-indexed inverse system of maps of level ≥ α are also of level ≥ α; and(iii) if K is a co-elementary class, k > ω and Lev≥k(K,K) = Lev≥k+1(K,K), then Lev≥1(K,K) = Lev≥(K,K).A space XK is co-existentially closed inK if Lev≥0(K, X) = Lev≥1(K,X). Adapting the technique of “adding roots,” by which one builds algebraically closed extensions of fields (and, more generally, existentially closed extensions of models of universal-existential theories), we showed in [8] that every infinite member of a co-inductive co-elementary class (such as CH itself, BS, or the class CON of continua) is a continuous image of a space of the same weight that is co-existentially closed in that class. We show here that every compactum that is co-existentially closed in CON (a co-existentially closed continuum) is both indecomposable and of covering dimension one.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. K-theory of co-existentially closed continua;Journal of Logic and Analysis;2024-03-14

2. On continuous images of ultra-arcs;Topology and its Applications;2019-07

3. AN INVITATION TO MODEL THEORY AND C*-ALGEBRAS;The Bulletin of Symbolic Logic;2019-03

4. The pseudoarc is a co-existentially closed continuum;Topology and its Applications;2016-07

5. On the first-order expressibility of lattice properties related to unicoherence in continua;Archive for Mathematical Logic;2011-03-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3