Author:
Hirayama Tetsuji,Kijima Masaaki,Nishimura Shoichi
Abstract
We consider discrete-time dynamic scheduling problems of the following three types of G/G/1 queue with K different customer classes: (i) a G/DFR/1 queue with K classes under preemptive resume service discipline, (ii) a G/IFR/1 queue with two classes under preemptive resume service discipline, and (iii) a G/G/1 queue with two classes under non-preemptive service discipline. Interchange arguments are used to show that simple index policies of different type minimize the total holding cost of customers in a finite-horizon scheduling period for the three cases. Our results extend the result for a G/M/1 queue by Buyukkoc et al. (1985) to general queues.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献