Finite Variable Logics in Descriptive Complexity Theory

Author:

Grohe Martin

Abstract

Throughout the development of finite model theory, the fragments of first-order logic with only finitely many variables have played a central role. This survey gives an introduction to the theory of finite variable logics and reports on recent progress in the area.For each k ≥ 1 we let Lk be the fragment of first-order logic consisting of all formulas with at most k (free or bound) variables. The logics Lk are the simplest finite-variable logics. Later, we are going to consider infinitary variants and extensions by so-called counting quantifiers.Finite variable logics have mostly been studied on finite structures. Like the whole area of finite model theory, they have interesting model theoretic, complexity theoretic, and combinatorial aspects. For finite structures, first-order logic is often too expressive, since each finite structure can be characterized up to isomorphism by a single first-order sentence, and each class of finite structures that is closed under isomorphism can be characterized by a first-order theory. The finite variable fragments seem to be promising candidates with the right balance between expressive power and weakness for a model theory of finite structures. This may have motivated Poizat [67] to collect some basic model theoretic properties of the Lk. Around the same time Immerman [45] showed that important complexity classes such as polynomial time (PTIME) or polynomial space (PSPACE) can be characterized as collections of all classes of (ordered) finite structures definable by uniform sequences of first-order formulas with a fixed number of variables and varying quantifier-depth.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. From Quantifier Depth to Quantifier Number: Separating Structures with k Variables;Proceedings of the 39th Annual ACM/IEEE Symposium on Logic in Computer Science;2024-07-08

2. Near-Optimal Lower Bounds on Quantifier Depth and Weisfeiler–Leman Refinement Steps;Journal of the ACM;2023-07-20

3. The power of Tarski's relation algebra on trees;Journal of Logical and Algebraic Methods in Programming;2022-04

4. Graphs Identified by Logics with Counting;ACM Transactions on Computational Logic;2022-01-31

5. Living without Beth and Craig: Definitions and Interpolants in the Guarded and Two-Variable Fragments;2021 36th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS);2021-06-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3