Simplified morasses with linear limits

Author:

Velleman Dan

Abstract

In a recent series of papers Kanamori ([4], [5], and [6]) defines generalizations of several combinatorial principles known to follow from the existence of morasses. Kanamori proves the consistency of his generalizations by forcing arguments which come close to satisfying the hypotheses of the Martin's Axiom-type characterizations of morasses developed independently by Shelah and Stanley [9] and the author [12]. A similar “almost application” of morasses appears in [11], in which Todorčević uses forcing to prove the consistency of the existence of Kurepa trees with no Aronszajn or Cantor subtrees. In all cases the attempted proofs using morasses fail for the same reason: the partial orders involved do not have strong enough closure properties.In an attempt to solve this problem Shelah and Stanley strengthened their characterization of morasses to allow applications to what they called “good canonical limit” partial orders. However, for rather subtle reasons even this strengthened forcing axiom is not good enough for the proposed applications. The problem this time is that Shelah and Stanley's “weak commutativity of Lim and restriction” requirement (see [9, 3.9(iv)]) is not satisfied. Furthermore, there is reason to believe that an ordinary morass is just not good enough for these applications, since in L morasses exist at all regular uncountable cardinals, but even a weak form of Todorčević's conclusion cannot hold at ineffable cardinals (see the end of §4).A possible solution to this problem is suggested by the fact that □κ is equivalent to a forcing axiom which applies to partial orders satisfying precisely the kind of weak closure conditions involved in the examples described above (see [13]). What is needed to make the proposed morass applications work is something which will do for morass constructions what □κ does for ordinary transfinite recursion constructions. In this paper we show how extra structure can be built into a morass to accomplish this goal.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3