Abstract
In his Mathematical logic, Quine adopts as axioms of quantification all statements specified by the first five of the six metatheorems listed below. The sixth serves as a rule of inference, and is the only primitive rule of inference used. The metatheorems in question are as follows:The theme of the present paper is that *101 may be eliminated by means of an otherwise trivial shift in the meanings of *100, *102, *103, and *104.In the statement of the above metatheorems and throughout the paper as a whole, we deviate from Quine's notational conventions only in using double quotes rather than corners and in using English letters rather than Greek ones as syntactical variables. Accordingly, ‘a’, ‘b’, and ‘d’ ambiguously denote variables ‘x’, ‘y’, ‘z’, and so on. The letters ‘p’ and ‘q’ ambiguously denote formulae, i.e. statements, and expressions which become statements when their contained free variables are supplanted by constants. Since we replace Quine's corners with double quotes, “(a)p” (for instance) is not the result of prefixing a parenthesized occurrence of the first letter of the alphabet to an occurrence of the sixteenth: “(a)p” is rather the result of prefixing any parenthesized variable a to any formula p.Following Quine, we define the closure of p as p itself when p is a statement and as “(a1)(a2)…(an)p” where a1, a2, …, an are the sole variables free in p and where each ai is alphabetically prior to the corresponding ai+1.
Publisher
Cambridge University Press (CUP)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A More Unified Approach to Free Logics;Journal of Philosophical Logic;2020-08-17
2. The permutation principle in quantificational logic;Journal of Philosophical Logic;1983-02
3. A simplified formalization of predicate logic with identity;Archiv für Mathematische Logik und Grundlagenforschung;1964-03