Abstract
Cherlin introduced the concept of bad groups (of finite Morley rank) in [Ch1]. The existence of such groups is an open question. If they exist, they will contradict the Cherlin-Zil'ber conjecture that states that an infinite simple group of finite Morley rank is a Chevalley group over an algebraically closed field. In this paper, we prove that bad groups of finite Morley rank 3 act on a natural geometry Γ (namely on a special pseudoplane; see Corollary 20) sharply flag-transitively.We show that Γ is not very far from being a projective plane and when it is so rk(Γ) = 2 and Γ is not Desarguesian (Theorem 2). Baldwin [Ba] recently discovered non-Desarguesian projective planes of Morley rank 2. This discovery, together with this paper, makes the existence of bad groups (also of bad fields) more plausible. A bad field is a pair (K, A) of finite Morley rank, where K is an algebraically closed field, A <≠K* and A is infinite. There existence is also unknown.In this paper, we define the concept of a sharp-field as a pair (K, A), where K is a field, A < K*and1. K = A − A,2. If a + b − 1 ∈ A, a ∈ A, b ∈ A, then either a = 1 or b = 1.If K is finite this is equivalent to 1 and2.′ ∣K∣ = ∣A∣2 ∣A∣ + 1.Finite sharp-fields are special cases of difference sets [De]
Publisher
Cambridge University Press (CUP)
Reference27 articles.
1. Groups and rings with categorical theories;Zil'ber;Fundamenta Mathematicae,1977
2. On solvable groups of finite Morley rank
3. On $ω_1$-categorical theories of fields
4. Geometric ABA-groups;Higman;Illinois Journal of Mathematics,1961
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献