Author:
Tuominen Pekka,Tweedie Richard L.
Abstract
We investigate conditions under which the transition probabilities of various Markovian storage processes approach a stationary limiting distribution π at an exponential rate. The models considered include the waiting time of the M/G/1 queue, and models for dams with additive input and state-dependent release rule satisfying a ‘negative mean drift' condition. A typical result is that this exponential ergodicity holds provided the input process is ‘exponentially bounded'; for example, in the case of a compound Poisson input, a sufficient condition is an exponential bound on the tail of the input size distribution. The results are proved by comparing the discrete-time skeletons of the Markov process with the behaviour of a random walk, and then showing that the continuous process inherits the exponential ergodicity of any of its skeletons.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献