Randomised allocation of treatments in sequential trials

Author:

Bather John

Abstract

Given a finite number of different experiments with unknown probabilities p1, p2, ···, pk of success, the multi-armed bandit problem is concerned with maximising the expected number of successes in a sequence of trials. There are many policies which ensure that the proportion of successes converges to p = max (p1, p2, ···, pk), in the long run. This property is established for a class of decision procedures which rely on randomisation, at each stage, in selecting the experiment for the next trial. Further, it is suggested that some of these procedures might perform well over any finite sequence of trials.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An index-based deterministic convergent optimal algorithm for constrained multi-armed bandit problems;Automatica;2021-07

2. An asymptotically optimal strategy for constrained multi-armed bandit problems;Mathematical Methods of Operations Research;2020-01-02

3. Bayesian adaptive bandit-based designs using the Gittins index for multi-armed trials with normally distributed endpoints;Journal of Applied Statistics;2017-06-28

4. Combining Multiple Strategies for Multiarmed Bandit Problems and Asymptotic Optimality;Journal of Control Science and Engineering;2015

5. References;Experimental Design - A Handbook and Dictionary for Medical and Behavioral Research;2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3