Stereology for some classes of polyhedrons

Author:

Ohser J.,Mücklich F.

Abstract

A general method for solving stereological problems for particle systems is applied to polyhedron structures. We suggested computing the kernel function of the respective stereological integral equation by means of computer simulation. Two models of random polyhedrons are investigated. First, regular prisms are considered which are described by their size and shape. The size-shape distribution of a stationary and isotropic spatial ensemble of regular prisms can be estimated from the size-shape distribution of the polygons observed in a section plane. Secondly, random polyhedrons are constructed as the convex hull of points which are uniformly distributed on surfaces of spheres. It is assumed that the size of the polyhedrons and the number of points (i.e. the number of vertices) are random variables. Then the distribution of a spatially distributed ensemble of polyhedrons is determined by its size-number distribution. The corresponding numerical density of this bivariate size-number distribution can be stereologically determined from the estimated numerical density of the bivariate size-number distribution of the intersection profiles.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,Statistics and Probability

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3