Abstract
This paper is a continuation of the study of a class of queueing systems where the queue-length process embedded at basic transition points, which consist of ‘arrivals’, ‘departures’ and ‘feedbacks’, is a Markov renewal process (MRP). The filtering procedure of Çinlar (1969) was used in [12] to show that the queue length process embedded separately at ‘arrivals’, ‘departures’, ‘feedbacks’, ‘inputs’ (arrivals and feedbacks), ‘outputs’ (departures and feedbacks) and ‘external’ transitions (arrivals and departures) are also MRP. In this paper expressions for the elements of each Markov renewal kernel are derived, and thence expressions for the distribution of the times between transitions, under stationary conditions, are found for each of the above flow processes. In particular, it is shown that the inter-event distributions for the arrival process and the departure process are the same, with an equivalent result holding for inputs and outputs. Further, expressions for the stationary joint distributions of successive intervals between events in each flow process are derived and interconnections, using the concept of reversed Markov renewal processes, are explored. Conditions under which any of the flow processes are renewal processes or, more particularly, Poisson processes are also investigated. Special cases including, in particular, the M/M/1/N and M/M/1 model with instantaneous Bernoulli feedback, are examined.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Reference22 articles.
1. Characterizations of Poisson traffic streams in Jackson queueing networks
2. Some properties of birth and death processes. S;Ventner;Afr. Statist. J.,1971
3. . Fujisawa T. and Chen Y.-M. (1974) The output processes of the queueing systems with feedback. Rep. Univ. Electro-Comm. 25-1, 75–88.
4. Filtering of Markov renewal queues, I: Feedback queues
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献