Probabilities over rich languages, testing and randomness

Author:

Gaifman Haim,Snir Marc

Abstract

The basic concept underlying probability theory and statistics is a function assigning numerical values (probabilities) to events. An “event” in this context is any conceivable state of affairs including the so-called “empty event”—an a priori impossible state. Informally, events are described in everyday language (e.g. “by playing this strategy I shall win $1000 before going broke”). But in the current mathematical framework (first proposed by Kolmogoroff [Ko 1]) they are identified with subsets of some all-inclusive set Q. The family of all events constitutes a field, or σ-field, and the logical connectives ‘and’, ‘or’ and ‘not’ are translated into the set-theoretical operations of intersection, union and complementation. The points of Q can be regarded as possible worlds and an event as the set of all worlds in which it takes place. The concept of a field of sets is wide enough to accommodate all cases and to allow for a general abstract foundation of the theory. On the other hand it does not reflect distinctions that arise out of the linguistic structure which goes into the description of our events. Since events are always described in some language they can be indentified with the sentences that describe them and the probability function can be regarded as an assignment of values to sentences. The extensive accumulated knowledge concerning formal languages makes such a project feasible. The study of probability functions defined over the sentences of a rich enough formal language yields interesting insights in more than one direction.Our present approach is not an alternative to the accepted Kolmogoroff axiomatics. In fact, given some formal language L, we can consider a rich enough set, say Q, of models for L (called also in this work “worlds”) and we can associate with every sentence the set of all worlds in Q in which the sentence is true. Thus our probabilities can be considered also as measures over some field of sets. But the introduction of the language adds mathematical structure and makes for distinctions expressing basic intuitions that cannot be otherwise expressed. As an example we mention here the concept of a random sequence or, more generally, a random world, or a world which is typical to a certain probability distribution.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference21 articles.

1. The definition of random sequences

2. Three approaches to the definitions of the concept “amount of information”;Kolmogoroff;Problemy Peredači Informacii,1965

Cited by 127 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Bayesian stopping;Journal of Mathematical Psychology;2023-09

2. Logical perspectives on the foundations of probability;Open Mathematics;2023-01-01

3. The Limits of Subjectivism: On the Relation Between IBE and (Objective) Bayesianism;Handbook of Abductive Cognition;2023

4. Bayesian merging of opinions and algorithmic randomness;The British Journal for the Philosophy of Science;2022-07-19

5. Tacking by conjunction, genuine confirmation and convergence to certainty;European Journal for Philosophy of Science;2022-07-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3