Abstract
If a and b are degrees of unsolvability, a is called (as in [1]) a minimal cover of b if b < a and no degree c satisfies b < c < a. A degree a is called a minimal cover if it is a minimal cover of some degree b. We show in ZF set theory that there is a degree d such that every degree a ≥ d is a minimal cover. In [1] it was remarked that this result follows via a lemma of D. A. Martin [4] from the determinacy of a certain Σ50 Gale-Stewart game (which in turn follows [5] from the existence of a measurable cardinal). The argument here is parallel to that of [1], but the essential new ingredient is the result of Paris [6] that Σ50 determinacy can be proved in ZF. Also it is necessary to replace the Σ50 game of [1] by a related Σ40 game and to use the method, rather than just the statement, of Martin's lemma.Theorem. There is a degreedsuch that every degreea ≥ dis a minimal cover.Proof. In a (Gale–Stewart) game on 2ω, players I and II construct a set of integers A as follows: At the nth stage, player I determines whether n ϵ A if n is even and player II if n is odd. Thus player I controls A0 and player II controls A1 where Ai = {n: 2n + i ϵ A}. Let Aij denote (Ai)j and let M (A, B) mean that the degree of A is a minimal cover of that of B. Consider now the particular game in which player I wins iff M(A, A00) holds.
Publisher
Cambridge University Press (CUP)
Cited by
14 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Degrees of Unsolvability;Computational Logic;2014
2. The typical Turing degree;Proceedings of the London Mathematical Society;2013-12-15
3. The Global Structure of the Turing Degrees;Handbook of Computability Theory;1999
4. Conjectures and questions from Gerald Sacks's Degrees of Unsolvability;Archive for Mathematical Logic;1997-08-01
5. Bibliography;Studies in Logic and the Foundations of Mathematics;1992