Author:
Ball Frank,O'neill Philip
Abstract
This paper considers a model for the spread of an epidemic in a closed, homogeneously mixing population in which new infections occur at rate βxy/(x + y), where x and y are the numbers of susceptible and infectious individuals, respectively, and β is an infection parameter. This contrasts with the standard general epidemic in which new infections occur at rate βxy. Both the deterministic and stochastic versions of the modified epidemic are analysed. The deterministic model is completely soluble. The time-dependent solution of the stochastic model is derived and the total size distribution is considered. Threshold theorems, analogous to those of Whittle (1955) and Williams (1971) for the general stochastic epidemic, are proved for the stochastic model. Comparisons are made between the modified and general epidemics. The effect of introducing variability in susceptibility into the modified epidemic is studied.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献