Minimality and completions of PA

Author:

Knight Julia F.

Abstract

The results in this paper say that natural upper bounds for sets of degrees associated with theories and models of arithmetic cannot be minimal. The basic new result says that for any completion T of PA, there is another completion S such that S<TT and Rep(S) = Rep(T). This immediately implies that deg(T) is not minimal over {deg(X): X ∈ Rep(T)}. As an application of the basic result, we obtain the fact that if is a non-standard model of TA (true arithmetic), then deg () cannot be minimal over {deg(X): X is arithmetical}. More generally, if is a non-standard model of an arbitrary completion T of PA, then deg() cannot be minimal over {deg(): X ∈ Rep(T)}. We vary the basic result, making S′ ≡TT′. As an application of the variant, we obtain the fact that if is a non-standard model of PA, then {deg(): } has no minimal element.The remainder of the present section gives a brief account of the background needed for the basic new result and the variant. These two results are proved in Section 2. The applications are given in Section 3, along with further background needed for the applications. One important source of ideas used in the present paper is a paper of Scott [9]. In addition, there are ideas taken from Tennenbaum [12], Feferman [3], Marker [6], [7], and Solovay. Chapter 19 of [1] gathers together most of this material. In fact, it contains all that is really essential. In one application, we appeal to Solovay's result on degrees of models of an arbitrary completion of PA, a result which is not completely proved in [1]. However, for the best application, which implies all the others, we use only some ideas from the proof of Solovay's theorem. These are given in lemmas that are proved in Section 3, where they are needed, or taken from [1], While the proof of Solovay's result requires an infinitely nested priority construction, our best application rests on nothing more than finite-injury constructions.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference12 articles.

1. Solovay R. , unpublished manuscript, circulated in 1982.

2. On Recursive Unsolvability of Hilbert's Tenth Problem

3. Arithmetical definable models of formalizable arithmetic;Feferman;Notices of the American Mathematical Society,1958

4. Algebras of sets binumerable in complete extensions of arithmetic

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computability-Theoretic Complexity of Countable Structures;Bulletin of Symbolic Logic;2002-12

2. Sequences of n-diagrams;Journal of Symbolic Logic;2002-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3