Abstract
Consider the convex hull of n independent, identically distributed points in the plane. Functionals of interest are the number of vertices Nn, the perimeter Ln and the area An of the convex hull. We study the asymptotic behaviour of these three quantities when the points are standard normally distributed. In particular, we derive the variances of Nn, Ln and An for large n and prove a central limit theorem for each of these random variables. We enlarge on a method developed by Groeneboom (1988) for uniformly distributed points supported on a bounded planar region. The process of vertices of the convex hull is of central importance. Poisson approximation and martingale techniques are used.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
26 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献