A logic for approximate reasoning

Author:

Ying Mingsheng

Abstract

Classical logic is not adequate to face the essential vagueness of human reasoning, which is approximate rather than precise in nature. The logical treatment of the concepts of vagueness and approximation is of increasing importance in artificial intelligence and related research. Consequently, many logicians have proposed different systems of many-valued logic as a formalization of approximate reasoning (see, for example, Goguen [G], Gerla and Tortora [GT], Novak [No], Pavelka [P], and Takeuti and Titani [TT]). As far as we know, all the proposals are obtained by extending the range of truth values of propositions. In these logical systems reasoning is still exact and to make a conclusion the antecedent clause of its rule must match its premise exactly. In addition. Wang [W] pointed out: “If we compare calculation with proving,... Procedures of calculation... can be made so by fairly well-developed methods of approximation; whereas... we do not have a clear conception of approximate methods in theorem proving.... The concept of approximate proofs, though undeniably of another kind than approximations in numerical calculations, is not incapable of more exact formulation in terms of, say, sketches of and gradual improvements toward a correct proof” (see pp, 224–225). As far as the author is aware, however, no attempts have been made to give a conception of approximate methods in theorem proving.The purpose of this paper is. unlike all the previous proposals, to develop a propositional calculus, a predicate calculus in which the truth values of propositions are still true or false exactly and in which the reasoning may be approximate and allow the antecedent clause of a rule to match its premise only approximately. In a forthcoming paper we shall establish set theory, based on the logic introduced here, in which there are ∣L∣ binary predicates ∈λ, λL such that R(∈, ∈λ) = λ where ∈ stands for ∈1 and 1 is the greatest element in L, and xλy is interpreted as that x belongs to y in the degree of λ, and relate it to intuitionistic fuzzy set theory of Takeuti and Titani [TT] and intuitionistic modal set theory of Lano [L]. In another forthcoming paper we shall introduce the resolution principle under approximate match and illustrate its applications in production systems of artificial intelligence.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference11 articles.

1. Fuzzy reasoning under approximate match;Ying;Science Bulletin,1992

2. The logic of inexact concepts;Goguen;Syntheses,1968

3. Toward Mechanical Mathematics

4. Fuzzy natural deduction

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Similarity-Based Reasoning With Order-Sorted Feature Logic;IEEE Transactions on Fuzzy Systems;2024-05

2. Chinese Research on Mathematical Logic and the Foundations of Mathematics;Asian Studies;2022-05-09

3. Proximity-Based Unification: An Efficient Implementation Method;IEEE Transactions on Fuzzy Systems;2021-05

4. Logic Studies in Mainland China;Dao Companion to Chinese Philosophy of Logic;2020

5. Thresholded semantic framework for a fully integrated fuzzy logic language;Journal of Logical and Algebraic Methods in Programming;2017-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3