The word problem for cancellation semigroups with zero

Author:

Gurevich Yuri,Lewis Harry R.

Abstract

By theword problemfor some class of algebraic structures we mean the problem of determining, given a finite setEof equations between words (i.e. terms) and an additional equationx=y, whetherx=ymust hold in all structures satisfying each member ofE. In 1947 Post [P] showed the word problem for semigroups to be undecidable. This result was strengthened in 1950 by Turing, who showed the word problem to be undecidable forcancellation semigroups,i.e. semigroups satisfying thecancellation propertyNovikov [N] eventually showed the word problem for groups to be undecidable.(Many flaws in Turing's proof were corrected by Boone [B]. Even after his corrections, at least one problem remains; the sentence on line 16 of p. 502 of [T] does not follow if one relation is principal and the other is a commutation relation. A corrected and somewhat simplified version of Turing's proof can be built on the construction given here.)In 1966 Gurevich [G] showed the word problem to be undecidable forfinitesemigroups. However, this result on finite structures has not been extended to cancellation semigroups or groups; indeed it is easy to see that a finite cancellation semigroup is a group, so both questions are the same. We do not here settle the word problem for finite groups, but we do show that the word problem is undecidable for finite semigroups with zero (that is, having an element 0 such thatx0 = 0x= 0 for allx) satisfying an approximation to the cancellation property (1).

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference9 articles.

1. The word problem for certain classes of semigroups;Gurevich;Algebra and Logic,1966

2. Unsolvability of the universal theory of finite groups

3. An Analysis of Turing's "The Word Problem in Semi-Groups with Cancellation"

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. One Henkin Quantifier in the Empty Vocabulary Suffices for Undecidability;Fundamenta Informaticae;2019-02-14

2. Relational lattices: From databases to universal algebra;Journal of Logical and Algebraic Methods in Programming;2016-06

3. Relational Lattices;Relational and Algebraic Methods in Computer Science;2014

4. On Satisfiability in ATL with Strategy Contexts;Logics in Artificial Intelligence;2012

5. On the equational theory of projection lattices of finite von neumann factors;The Journal of Symbolic Logic;2010-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3