An ideal game

Author:

Galvin F.,Jech T.,Magidor M.

Abstract

Let us consider the following infinite game between two players, Empty and Nonempty. We are given a large set S. Empty opens the game by choosing a large subset S0 of S; then Nonempty chooses a large set S1S0; then Empty chooses large S2S, etc. The game is over after ω moves. If ⋂n=0xSn is empty then Empty wins, and if ⋂n=0Sn is nonempty then Nonempty wins.If “large” means “infinite”, then Empty can beat Nonempty rather easily: he chooses So countable, S0 = {a0, a1,…, an,…}, and then he chooses S2 such that a0S2, S4 such that a1, ∉ S4 and so on.Next we assume that S is a set of uncountable cardinality, and that “large” means “of cardinality ∣S∣”. Then still Empty can win, but his winning strategy is somewhat more sophisticated: Let us identify S with a cardinal number κ. Thus each subset of S of size κ is a set of ordinals below κ. For each X ⊆ κ of size κ, let fx be the unique order-preserving mapping of X onto κ, and let F(X) = {x ϵ X: f(x) is a successor ordinal}. Empty's strategy is to play S0 = F(K), and when Nonempty plays S2k − 1, let S2k = F(S2k − 1).

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference4 articles.

1. Eine Eigenschaft abstrakter Mengen

2. On the axiom of determinateness (II)

3. Jech T. , Magidor M. , Mitchell W. and Prikry K. , Precipitous ideals, forthcoming.

4. On ideals of sets and the power set operation

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. More Ramsey theory for highly connected monochromatic subgraphs;Canadian Journal of Mathematics;2023-11-24

2. Games with filters I;Journal of Mathematical Logic;2023-08-29

3. ASYMMETRIC CUT AND CHOOSE GAMES;The Bulletin of Symbolic Logic;2023-07-28

4. PFA and precipitousness of the nonstationary ideal;Proceedings of the American Mathematical Society;2017-08-07

5. The nonstationary ideal on $$P_\kappa (\lambda )$$ P κ ( λ ) for $$\lambda $$ λ singular;Archive for Mathematical Logic;2017-05-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3