Recursively saturated nonstandard models of arithmetic

Author:

Smoryński C.

Abstract

Through the ability of arithmetic to partially define truth and the ability of infinite integers to simulate limit processes, nonstandard models of arithmetic automatically have a certain amount of saturation: Any encodable partial type whose formulae all fall into the domain of applicability of a truth definition must, by finite satisfiability and Overspill, be nonstandard-finitely satisfiable—whence realized. This fact was first exploited by A. Robinson, who in Robinson [1963] cited the unrealizability in a given model of a certain encodable partial type to prove Tarski's Theorem on the Undefinability of Truth. A decade later, H. Friedman brought this phenomenon to the public's attention by using it to establish impressive embeddability criteria for countable nonstandard models of arithmetic. Subsequently, Wilkie considered models expandable to “strong theories” and, among such models, complemented Friedman's embeddability criteria with elementary embeddability and isomorphism criteria. Oddly enough, the fact that some kind of saturation property was being employed was not explicitly acknowledged in any of this work.It is in the unpublished dissertation of Wilmers that these submerged saturation properties first surfaced. [As I have only seen accounts of it (most notably Murawski [1976/1977]) and not the dissertation itself, what I have to say about it will not quite be accurate. (Indeed, the referee has refuted, without providing alternate information, every conjecture I have made about the contents of this thesis.)

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference40 articles.

1. Wilkie A. [A] On the arithmetical parts of strong theories (unpublished).

2. The role of the axiom of induction in elementary arithmetic

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. SELF-EMBEDDINGS OF MODELS OF ARITHMETIC; FIXED POINTS, SMALL SUBMODELS, AND EXTENDABILITY;The Journal of Symbolic Logic;2022-12-22

2. Set theoretical analogues of the Barwise-Schlipf theorem;Annals of Pure and Applied Logic;2022-10

3. The Barwise-Schlipf theorem;Proceedings of the American Mathematical Society;2020-10-20

4. Neutrally expandable models of arithmetic;Mathematical Logic Quarterly;2019-07-28

5. MODELS OF POSITIVE TRUTH;The Review of Symbolic Logic;2018-12-26

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3