Abstract
I solve here some problems left open in “T-convexity and Tame Extensions” [9]. Familiarity with [9] is assumed, and I will freely use its notations. In particular, T will denote a complete o-minimal theory extending RCF, the theory of real closed fields. Let (, V) ⊨ Tconvex, let = V/m(V) be the residue field, with residue class map x ↦ : V ↦ , and let υ: → Γ be the associated valuation. “Definable” will mean “definable with parameters”. The main goal of this article is to determine the structure induced by (, V) on its residue fieldand on its value group Γ. In [9] we expanded the ordered field to a model of T as follows. Take a tame elementary substructure ′ of such that R′ ⊆ V and R′ maps bijectively onto under the residue class map, and make this bijection into an isomorphism ′ ≌ of T-models. (We showed such ′ exists, and that this gives an expansion of to a T-model that is independent of the choice of ′.).
Publisher
Cambridge University Press (CUP)
Reference11 articles.
1. Exponentiation is hard to avoid
2. Model completeness for expansions of the real field by restricted Pfaffian functions and by the exponential function;Wilkie;Journal of the American Mathematical Society
3. The Elementary Theory of Restricted Analytic Fields with Exponentiation
4. On the reduction of semialgebraic sets by real valuations
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献