Abstract
The aim of this paper is to investigate the distribution of the extinction times, T, of the stochastic logistic process from both the numerical and the theoretical standpoint. The problem is approached first by deriving formulae for the moments of T; it is then shown that in most cases T is, very nearly, a gamma variate. Some simulated results are given and these agree well with the theory. Furthermore, a consideration of the process conditioned on non-extinction is shown to be an effective way of obtaining a large t (time) description of the unconditioned process. Finally, a more general form of the model in which the death-rate as well as the birth-rate is ‘density-dependent' is considered, and by comparison with the usual form of the model the effect on T of this additional factor is assessed.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Reference33 articles.
1. ON TIME LAGS IN EQUATIONS OF GROWTH
2. ON POPULATION GROWTH IN A RANDOMLY VARYING ENVIRONMENT
3. Sur les modèles stochastiques logistiques en démographie;Picard;Ann. Inst. H. Poincaré,1963
Cited by
61 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献