Minimal pairs and high recursively enumerable degrees

Author:

Cooper S. B.

Abstract

A. H. Lachlan [2] and C. E. M. Yates [4] independently showed that minimal pairs of recursively enumerable (r.e.) degrees exist. Lachlan and Richard Ladner have shown (unpublished) that there is no uniform method for producing a minimal pair of r.e. degrees below a given nonzero r.e. degree. It is not known whether every nonzero r.e. degree bounds a r.e. minimal pair, but in the present paper it is shown (uniformly) that every high r.e. degree bounds a r.e. minimal pair. (A r.e. degree is said to be high if it contains a high set in the sense of Robert W. Robinson [3].)Theorem. Let a be a recursively enumerable degree for which a′ = 0″. Then there are recursively enumerable degrees b0 and b1 such that0 < bi < a for each i ≤ 1, and b0b1 = 0.The proof is based on the Lachlan minimal r.e. pair construction. For notation see Lachlan [2] or S. B. Cooper [1].By Robinson [3] we can choose a r.e. representative A of the degree a, with uniformly recursive tower {As, ∣ s ≥ 0} of finite approximations to A, such that CA dominates every recursive function whereWe define, stage by stage, finite sets Bi,s, i ≤ 1, s ≥ 0, in such a way that Bi, s + 1Bi,s for each i, s, and {Bi,si ≤ 1, s ≥ 0} is uniformly recursive.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference4 articles.

1. Lower bounds for pairs of recursively enumerable degrees;Lachlan;Proceedings of the London Mathematical Society,1966

2. A Dichotomy of the Recursively Enumerable Sets

3. Minimal upper bounds for sequences of recursively enumerable degrees;Cooper;Journal of the London Mathematical Society,1972

Cited by 48 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Splitting into degrees with low computational strength;Annals of Pure and Applied Logic;2018-08

2. Automorphism bases for the recursively enumerable degrees;Computability;2018-06-07

3. S. Barry Cooper (1943–2015);Computability;2018-06-07

4. A HIERARCHY OF COMPUTABLY ENUMERABLE DEGREES;The Bulletin of Symbolic Logic;2018-03

5. IN MEMORIAM: BARRY COOPER 1943–2015;The Bulletin of Symbolic Logic;2016-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3