Lattice embeddings into the recursively enumerable degrees. II

Author:

Ambos-Spies K.,Lerman M.

Abstract

The problem of characterizing the finite lattices which can be embedded into the recursively enumerable degrees has a long history, which is summarized in [AL]. This problem is an important one, as its solution is necessary if a decision procedure for the ∀∃-theory of the poset of recursively emumerable degrees is to be found. A recursive nonembeddability condition, NEC, which subsumes all known nonembeddability conditions was presented in [AL]. This paper focuses on embeddability. An embeddability condition, EC, is introduced, and we prove that every finite lattice having EC can be embedded (as a lattice) into . EC subsumes all known embeddability conditions.EC is a Π3 condition which states that certain obstructions to proving embeddability do not exist. It seems likely that the recursive labeled trees used in EC can be replaced with trees which are effectively generated from uniformly defined finite trees, in which case EC would be equivalent to a recursive condition. We do not know whether EC and NEC are complementary. This problem seems to be combinatorial, rather than recursion-theoretic in nature. Our efforts to find a finite lattice satisfying neither EC nor NEC have, to this point, been unsuccessful. It is the second author's conjecture that the techniques for proving embeddability which are used in this paper cannot be refined very much to obtain new embeddability results.EC is introduced in §2, and the various conditions and definitions are motivated by presenting examples of embeddable lattices and indicating how the embedding proof works in those particular cases. The embedding construction is presented in §3, and the proof in §4.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3