Abstract
It is shown that if parameters occurring linearly in the transition intensity of a Markov process are replaced by their respective ‘Bayesian estimates' then the new process thus generated has an equilibrium distribution which is a mixture (over parameter values) of the original parametrised equilibrium distribution.One effectively then has an extra state dependence in that one selects from a given class of transition rules those rules which are most consistent with the value of current state. The effect of this is thus to preserve the status quo, in that unlikely transitions are made even less likely. By this means one can construct processes which show several distinct and metastable modes of behaviour, and which can serve as models for memory devices.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. A stochastic model of an artificial neuron;Advances in Applied Probability;1991-12
2. A stochastic model of an artificial neuron;Advances in Applied Probability;1991-12