Network-Colourings

Author:

Descartes Blanche

Abstract

I wonder why problems about map-colourings are so fascinating? I know several people who have made more or less serious attempts to prove the Four-Colour Theorem, and I suppose many more have made collections of maps in the hope of hitting upon a counter-example. I like P. G. Tait’s approach myself; he removed the problem from the plane so that it could be discussed in terms of more general figures. He showed that the Four-Colour Theorem is equivalent to the proposition that if N is a connected cubical network, without an isthmus, in the plane, then the edges of N can be coloured in three colours so that the colours of the three meeting at any vertex are all different. (A cubical network is a set of points called vertices joined in pairs by simple arcs called edges, no two of which intersect except at a common vertex, in such a way that just three edges meet at each vertex. An isthmus is an edge whose removal destroys the connection of the network.) It was at first conjectured that every cubical network having no isthmus could be “three-coloured” in this way, but this was disproved by the example of Fig. 1, for which it may readily be verified that no three-colouring exists.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Reference1 articles.

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Normal 5-edge-coloring of some snarks superpositioned by Flower snarks;European Journal of Combinatorics;2024-12

2. The hardness of recognising poorly matchable graphs and the hunting of the d-snark;RAIRO - Operations Research;2024-05

3. Normal 5-edge-coloring of some snarks superpositioned by the Petersen graph;Applied Mathematics and Computation;2024-04

4. Rotationally symmetric snarks from voltage graphs;Discrete Mathematics;2024-04

5. Superposition of snarks revisited;European Journal of Combinatorics;2021-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3