Author:
Resnick Sidney I.,Tomkins R. J.
Abstract
For random variables {Xn, n ≧ 1} unbounded above set Mn = max {X1, X2, …, Xn}. When do normalizing constants bn exist such that Mn/bn→ 1 a.s.; i.e., when is {Mn} a.s. stable? If {Xn} is i.i.d. then {Mn} is a.s. stable iff for all and in this case bn ∼ F–1 (1 – 1/n) Necessary and sufficient conditions for lim supn→∞, Mn/bn = l > 1 a.s. are given and this is shown to be insufficient in general for lim infn→∞Mn/bn = 1 a.s. except when l = 1. When the Xn are r.v.'s defined on a finite Markov chain, one shows by means of an analogue of the Borel Zero-One Law and properties of semi-Markov matrices that the stability problem for this case can be reduced to the i.i.d. case.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
43 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献