Abstract
In a previous paper [13] we introduced a hierarchy (GnAω)n∈ℕ of subsystems of classical arithmetic in all finite types where the growth of definable functions of GnAω corresponds to the well-known Grzegorczyk hierarchy. Let AC-qf denote the schema of quantifier-free choice.[11], [13], [8] and [7] study various analytical principles Γ in the context of the theories GnAω + AC-qf (mainly for n = 2) and use proof-theoretic tools like, e.g., monotone functional interpretation (which was introduced in [12]) to determine their impact on the growth of uniform bounds Φ such thatwhich are extractable from given proofs (based on these principles Γ) of sentencesHere A0(u, k, v, w) is quantifier-free and contains only u, k, v, w as free variables; t is a closed term and ≤p is defined pointwise. The term ‘uniform bound’ refers to the fact that Φ does not depend on v ≤ptuk (see [12] for the relevance of such uniform bounds in numerical analysis and for concrete applications to approximation theory).
Publisher
Cambridge University Press (CUP)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献