Some independence results for Peano arithmetic

Author:

Paris J. B.

Abstract

In this paper we shall outline a purely model theoretic method for obtaining independence results for Peano's first order axioms (P). The method is of interest in that it provides for the first time elementary combinatorial statements about the natural numbers which are not provable in P. We give several examples of such statements.Central to this exposition will be the notion of an indicator. Indicators were introduced by L. Kirby and the author in [3] although they had occurred implicitly in earlier papers, for example Friedman [1]. The main result on indicators which we shall need (Lemma 1) was proved by Laurie Kirby and the author in the summer of 1976 but it was not until early in the following year that the author realised that this lemma could be used to give independence results.The first combinatorial independence results obtained were essentially statements about certain finite games and consequently were not immediately meaningful (see Example 2). This shortcoming was remedied by Leo Harrington who, upon hearing an incorrect version of our results, noticed a beautifully simply independent combinatorial statement. We outline this result in Example 3. An alternative, more detailed, proof may be found in [5].Clearly Laurie Kirby and Leo Harrington have made a very significant contribution to this paper and we wish to express our sincere thanks to them.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference7 articles.

1. McAloon K. , On iterating the “new” undecidable formulas (to appear).

2. Kirby L. , Doctoral dissertation, Manchester University, 1977.

Cited by 50 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. P;Enzyklopädie Philosophie und Wissenschaftstheorie;2024

2. In Search of the First-Order Part of Ramsey’s Theorem for Pairs;Lecture Notes in Computer Science;2021

3. The proof-theoretic strength of Ramsey's theorem for pairs and two colors;Advances in Mathematics;2018-05

4. The strength of infinitary Ramseyan principles can be accessed by their densities;Annals of Pure and Applied Logic;2017-09

5. Reverse mathematical bounds for the Termination Theorem;Annals of Pure and Applied Logic;2016-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3