Results concerning same modal systems that contain S2

Author:

Åqvist Lennart

Abstract

It is well known that if a postulate LLCpp or a rule of procedure ├α→├Lα (from a thesis α of a considered system to infer a thesis of that system) is added to Lewis's modal system S3, we get his system S4 (see [7], p. 148). It is also known that the addition of this rule to S2 and SI has the effect of converting these systems into the Gödel-Feys-von Wright system T (M). My purpose in this paper is first to draw attention to some other ways of converting S3 and S2 into S4 and T respectively, as well as to extend a theorem of Halldén on S3, S4 and S7 to S2, T and S6. The results reached will also apply to the systems S3.5, S5 and S7.5, where S3.5 and S7.5 are obtained, respectively, from S3 and S7 by the addition of the postulate CNLpLNLp; an answer will be given to the question of irreducible modalities in S3.5. Moreover, two results will be proved that bear on the problem whether the systems S2 and T can be axiomatized by means of a finite number of axiom schemata and material detachment as the only primitive rule of inference.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference10 articles.

1. Note on a modal system of Feys-von Wright;Sobociński;Journal of computing systems,1953

2. The deduction theorems and two new logical systems;Shaw-Kwei;Methodes,1950

3. Results concerning the decision problem of Lewis's calculi S3 and So;Halldén;this Journal,1949

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. S7;Journal of Applied Logic;2013-12

2. Modalities of Systems Containing S3;Zeitschrift für Mathematische Logik und Grundlagen der Mathematik;1972

3. The System S9;Philosophical Logic;1969

4. The interpretation of some Lewis systems of modal logic;Australasian Journal of Philosophy;1967-01

5. Artykuły of treści logicznej zawarte w czasopismach nadesłanych do redakcji;Studia Logica;1965-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3