Non Σn axiomatizable almost strongly minimal theories

Author:

Marker David

Abstract

Recall that a theory is said to be almost strongly minimal if in every model every element is in the algebraic closure of a strongly minimal set. In 1970 Hodges and Macintyre conjectured that there is a natural number n such that every ℵ0-categorical almost strongly minimal theory is Σn axiomatizable. Recently Ahlbrandt and Baldwin [A-B] proved that if T is ℵ0-categorical and almost strongly minimal, then T is Σn axiomatizable for some n. This result also follows from Ahlbrandt and Ziegler's results on quasifinite axiomatizability [A-Z]. In this paper we will refute Hodges and Macintyre's conjecture by showing that for each n there is an ℵ0-categorical almost strongly minimal theory which is not Σn axiomatizable.Before we begin we should note that in all these examples the complexity of the theory arises from the complexity of the definition of the strongly minimal set. It is still open whether the conjecture is true if we allow a predicate symbol for the strongly minimal set.We will prove the following result.Theorem. For every n there is an almost strongly minimal ℵ0-categorical theory T with models M and N such that N is Σn elementary but not Σn + 1 elementary.To show that these theories yield counterexamples to the conjecture we apply the following result of Chang [C].Theorem. If T is a Σn axiomatizable theory categorical in some infinite power, M and N are models of T and N is a Σn elementary extension of M, then N is an elementary extension of M.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 29 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Semidecidable Numberings in Admissible Sets;Algebra and Logic;2020-07

2. There is no classification of the decidably presentable structures;Journal of Mathematical Logic;2018-11-20

3. A COMPUTABLE FUNCTOR FROM GRAPHS TO FIELDS;The Journal of Symbolic Logic;2018-03

4. Theory spectra and classes of theories;Transactions of the American Mathematical Society;2017-05-16

5. Strength and Weakness in Computable Structure Theory;Computability and Complexity;2016-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3