Criteria of constructibility for real numbers

Author:

Myhill John

Abstract

The purpose of this paper is to prove two theorems and a conjecture (Conjecture II) announced in section 15 an earlier paper of the author's (cited as “CT”), and to compare them briefly with related results of Specker. Familiarity with both papers is assumed; the terminology of the former is used throughout. On two points however clarification of the usage of CT is in order, and to this chore we must first proceed.A half-section is the lower half of a Dedekind cut; if the cut is rational, the half section is to include the rational corresponding to the real defined by the cut. A whole-section is the relation which holds between any member of the lower and any member of the upper half of some Dedekind cut. If the cut is rational the corresponding rational is to be a member of both halves.A real number α is said to be approximate in K to any required number of decimal places if it is possible to define the predicatesx < α’, ‘xα’, ‘x > α’, and ‘xα’ (x rational) in K. In view of section 7 of CT this will mean that every true inequation between α and a terminating decimal will be provable in K.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference3 articles.

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Primitive recursive real numbers;MLQ;2007-09

2. Classification of Computably Approximable Real Numbers;Theory of Computing Systems;2007-07-06

3. Classification of the Computable Approximations by Divergence Boundings;Electronic Notes in Theoretical Computer Science;2007-01

4. Primitive Recursiveness of Real Numbers under Different Representations;Electronic Notes in Theoretical Computer Science;2007-01

5. On the hierarchies of Δ20-real numbers;RAIRO - Theoretical Informatics and Applications;2007-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3