Abstract
A Markov process in discrete time with a finite state space is controlled by choosing the transition probabilities from a prescribed set depending on the state occupied at any time. Given the immediate cost for each choice, it is required to minimise the expected cost over an infinite future, without discounting. Various techniques are reviewed for the case when there is a finite set of possible transition matrices and an example is given to illustrate the unpredictable behaviour of policy sequences derived by backward induction. Further examples show that the existing methods may break down when there is an infinite family of transition matrices. A new approach is suggested, based on the idea of classifying the states according to their accessibility from one another.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,Statistics and Probability
Cited by
44 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献