Abstract
AbstractWe consider the infinite game where player ONE chooses terms of a strictly increasing sequence of first category subsets of a space and TWO chooses nowhere dense sets. If after ω innings TWO's nowhere dense sets cover ONE's first category sets, then TWO wins. We prove a theorem which implies for the real line: If TWO has a winning strategy which depends on the most recent n moves of ONE only, then TWO has a winning strategy depending on the most recent 3 moves of ONE (Corollary 3). Our results give some new information concerning Problem 1 of [S1] and clarifies some of the results in [B-J-S] and in [S1].
Publisher
Cambridge University Press (CUP)
Reference6 articles.
1. A partition relation for partially ordered sets
2. Meager-nowhere Dense Games (I): ${\bf n}$-tactics
3. Meager nowhere-dense games (II): coding strategies;Scheepers;Proceedings of the American Mathematical Society,1991
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献