Abstract
An algorithm has been described by S. Burris [3] which decides if a finite set of identities, whose function symbols are of rank at most 1, has a finite, nontrivial model. (By “nontrivial” it is meant that the universe of the model has at least two elements.) As a consequence of some results announced in the abstracts [2] and [8], it is clear that if the restriction on the ranks of function symbols is relaxed somewhat, then this finite model problem is no longer solvable by an algorithm, or at least not by a “recursive algorithm” as the term is used today.In this paper we prove a sharp form of this negative result; showing, by the way, that Burris' result is in a sense the best possible result in the positive direction. Our main result is that in a first order language whose only function or relation symbol is a 2-place function symbol (the language of groupoids), the set of identities that have no nontrivial model, is recursively inseparable from the set of identities such that the sentence has a finite model. As a corollary, we have that each of the following problems, restricted to sentences defined in the language of groupoids, is algorithmically unsolvable: (1) to decide if an identity has a finite nontrivial model; (2) to decide if an identity has a nontrivial model; (3) to decide if a universal sentence has a finite model; (4) to decide if a universal sentence has a model. We note that the undecidability of (2) was proved earlier by McNulty [13, Theorem 3.6(i)], improving results obtained by Murskiǐ [14] and by Perkins [17]. The other parts of the corollary seem to be new.
Publisher
Cambridge University Press (CUP)
Reference20 articles.
1. Equational theories of algebras with distributive congruences
2. Nondiscernible properties of finite systems of identity relations;Murskiǐ;Doklady Academii Nauk SSSR,1971
3. McNulty G. , The decision problem for equational bases of algebras, Thesis, University of California, Berkeley, 1971.
Cited by
59 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Monadic Monadic Second Order Logic;Samson Abramsky on Logic and Structure in Computer Science and Beyond;2023
2. Congruence computations in principal arithmetical varieties;Algebra universalis;2018-11-21
3. Possible classification of finite-dimensional compact Hausdorff topological algebras;Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science;2018
4. Introducing Boolean Semilattices;Don Pigozzi on Abstract Algebraic Logic, Universal Algebra, and Computer Science;2018
5. Efficient Encodings of First-Order Horn Formulas in Equational Logic;Automated Reasoning;2018