Abstract
For the delayed Bernoulli feedback queue with first come–first served discipline under weak assumptions a relationship for the generating functions of the joint queue-length distribution at various points in time is given. A decomposition for the generating function of the stationary total queue length distribution has been proven. The Laplace-Stieltjes transform of the stationary joint workload distribution function is represented by its marginal distributions. The arrival process is Poisson, renewal or arbitrary stationary, respectively. The service times can form an i.i.d. sequence at each queue. Different kinds of product form of the generating function of the joint queue-length distribution are discussed.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Reference13 articles.
1. Approximation of the queue-length distribution of an M/GI/s queue by the basic equations
2. Networks of Waiting Lines
3. König D. and Schmidt V. (1984) Relationships between various stationary characteristics in feedback queues generated by a general class of marked point processes. Izvest. Akad. Nauk SSSR, Techn. Kibernet. No. 2, 110–114 (in Russian).
4. Methods for proving relationships between stationary characteristics of queueing systems with point processes;König;EIK,1980
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献