Abstract
AbstractLet D be a strongly minimal set in the language L, and D′ ⊃ D an elementary extension with infinite dimension over D. Add to L a unary predicate symbol D and let T′ be the theory of the structure (D′, D), where D interprets the predicate D. It is known that T′ is ω-stable. We proveTheorem A. If D is not locally modular, then T′ has Morley rank ω.We say that a strongly minimal set D is pseudoprojective if it is nontrivial and there is a k < ω such that, for all a, b ∈ D and closed X ⊂ D, a ∈ cl(Xb) ⇒ there is a Y ⊂ X with a ∈ cl(Yb) and ∣Y∣ ≤ k. Using Theorem A, we proveTheorem B. If a strongly minimal set D is pseudoprojective, then D is locally projective.The following result of Hrushovski's (proved in §4) plays a part in the proof of Theorem B.Theorem C. Suppose that D is strongly minimal, and there is some proper elementary extension D1 of D such that the theory of the pair (D1, D) is ω1-categorical. Then D is locally modular.
Publisher
Cambridge University Press (CUP)
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献