Abstract
On any reasonable definition of functions, neither the category of sets nor the category of small categories is cartesian closed in New Foundations (NF). The latter category is sometimes proposed as a foundation for category theory since it is among its own objects. Our result shows it is a poor one.In NF, as in other set theories, a "function" f from a set A to a set B is defined to be a set f of ordered pairs 〈x, y〉 with x in A and y in B, such that (a) if 〈x, y〉 ∈ f and 〈x, y′〉 ∈ f then y = y′, and (b) for every x in A there is some y in B with 〈x, y〉 ∈ f. But in NF different definitions of ordered pairs give significantly different functions. I say a reasonable definition must give:1. The formula z = 〈x, y〉 is stratifiable.2. For every set S there is a set {〈x, x〉 ∣ x ∈ S}.3. If f is a function from A to B, and g one from B to C, there is a set {〈x, z〉∣(∃y)〈x, y〉∈ f & 〈y, z〉∈ g}.Principles 2 and 3 are needed for identity functions and composites. By principle 1, any sets A and B have a set A × B of all ordered pairs 〈x, y〉 with x in A and y in B, but it does not follow that functions exist making A × B a categorical product of A and B.
Publisher
Cambridge University Press (CUP)
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Index;Conceptions of Set and the Foundations of Mathematics;2020-01-23
2. Bibliography;Conceptions of Set and the Foundations of Mathematics;2020-01-23
3. Concluding Remarks;Conceptions of Set and the Foundations of Mathematics;2020-01-23
4. The Graph Conception;Conceptions of Set and the Foundations of Mathematics;2020-01-23
5. The Stratified Conception;Conceptions of Set and the Foundations of Mathematics;2020-01-23