Abstract
In this paper we consider the Markov chain formed by the operation of the move-to-front scheme. We show that the eigenvalues of the transition probability matrix are of the form pi, pi + pj, ···, where pi is the probability of selecting the ith item and N is the number of items; further, that the multiplicity of the eigenvalues of the form Σpi where the summation is over m items is equal to the number of permutations of N – m objects, ordered in some way, such that no object is in its natural position. Finally, we show that the Markov chain is lumpable – many times over.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献