Quantification theory and empty individual-domains

Author:

Hailperin Theodore

Abstract

In a recent paper by Mostowski [1] we find an investigation of those formulas of quantification theory which are valid in all domains of individuals, including the empty domain. Mostowski gives a complete set of axioms for such a first order functional calculus (the system is called “”) and a comparison is made with a form of the usual calculus, Church's in [2]. It is pointed out that is much less elegant; in particular, the distributivity laws for quantifiers (e.g., (x){A . B) .{x)A . (x)B) do not hold in general, and likewise the rule of modus ponens does not preserve validity in all cases.In this paper we show that a not inelegant system is obtained if one modifies Mostowski's approach in two respects; and once this is done a somewhat neater proof of completeness can be given.The first respect in which we diverge from Mostowski is in the treatment of vacuous quantifiers. For him if p has no free x, then (x)p and (∃x)p are both to have the same value (interpretation) as p1. But this is not the only way to assign values to vacuous quantifications. For when universal quantification is viewed as a generalized conjunction, the formula (x)Fx has the significance of Fa . Fb…. for as many conjunctands as there are individuals in the domain, and if Fx should have the “constant” value p, then (x)p is to mean the conjunction of p with itself for as many times as there are individuals in the domain (compare the arithmetical ).

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference4 articles.

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nothing, Everything, Something!;Logic, Argumentation & Reasoning;2022

2. A More Unified Approach to Free Logics;Journal of Philosophical Logic;2020-08-17

3. Existential Import and an Unnecessary Restriction on Predicate Logics;History and Philosophy of Logic;2017-10-11

4. Gentzen and Jaśkowski Natural Deduction: Fundamentally Similar but Importantly Different;Studia Logica;2014-06-25

5. The History of Categorical Logic: 1963–1977;Handbook of the History of Logic;2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3