The fine structure of real mice

Author:

Cunningham Daniel W.

Abstract

AbstractBefore one can construct scales of minimal complexity in the Real Core Model, K(ℝ), one needs to develop the fine-structure theory of K (ℝ). In this paper, the fine structure theory of mice, first introduced by Dodd and Jensen, is generalized to that of real mice. A relative criterion for mouse iterability is presented together with two theorems concerning the definability of this criterion. The proof of the first theorem requires only fine structure; whereas, the second theorem applies to real mice satisfying AD and follows from a general definability result obtained by abstracting work of John Steel on L(ℝ). In conclusion, we discuss several consequences of the work presented in this paper relevant to two issues: the complexity of scales in K(ℝ)and the strength of the theory ZF + AD + ┐DC.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference8 articles.

1. Cunningham D. W. , Scales and the fine structure of K(ℝ), in preparation.

2. Is there a set of reals not in K(R)?

3. The core model

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Strong partition cardinals and determinacy in $${K(\mathbb{R})}$$ K ( R );Archive for Mathematical Logic;2014-10-11

2. Scales of minimal complexity in $${K(\mathbb{R})}$$;Archive for Mathematical Logic;2012-01-26

3. Is there a set of reals not in K(R)?;Annals of Pure and Applied Logic;1998-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3