Abstract
Let ℜ be an expansion of a dense linear order (R, <) without endpoints having theintermediate value property, that is, for alla, b∈R, every continuous (parametrically) definable functionf: [a, b] →Rtakes on all values inRbetweenf(a) andf(b). Every expansion of the real line (ℝ, <), as well as every o-minimal expansion of (R, <), has the intermediate value property. Conversely, some nice properties, often associated with expansions of (ℝ, <) or with o-minimal structures, hold for sets and functions definable in ℜ. For example, images of closed bounded definable sets under continuous definable maps are closed and bounded (Proposition 1.10).Of particular interest is the case that ℜ expands an ordered group, that is, ℜ defines a binary operation * such that (R, <, *) is an ordered group. Then (R, *) is abelian and divisible (Proposition 2.2). Continuous nontrivial definable endo-morphisms of (R, *) are surjective and strictly monotone, and monotone nontrivial definable endomorphisms of (R, *) are strictly monotone, continuous and surjective (Proposition 2.4). There is a generalization of the familiar result that every proper noncyclic subgroup of (ℝ, +) is dense and codense in ℝ: IfGis a proper nontrivial subgroup of (R, *) definable in ℜ, then eitherGis dense and codense inR, orGcontains an elementusuch that (R, <, *,e, u, G) is elementarily equivalent to (ℚ, <, +, 0, 1, ℤ), whereedenotes the identity element of (R, *) (Theorem 2.3).Here is an outline of this paper. First, we deal with some basic topological results. We then assume that ℜ expands an ordered group and establish the results mentioned in the preceding paragraph. Some examples are then given, followed by a brief discussion of analytic results and possible limitations. In an appendix, an explicit axiomatization (used in the proof of Theorem 2.3) is given for the complete theory of the structure (ℚ, <, +, 0, 1, ℤ).
Publisher
Cambridge University Press (CUP)
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献