Expansions of dense linear orders with the intermediate value property

Author:

Miller Chris

Abstract

Let ℜ be an expansion of a dense linear order (R, <) without endpoints having theintermediate value property, that is, for alla, bR, every continuous (parametrically) definable functionf: [a, b] →Rtakes on all values inRbetweenf(a) andf(b). Every expansion of the real line (ℝ, <), as well as every o-minimal expansion of (R, <), has the intermediate value property. Conversely, some nice properties, often associated with expansions of (ℝ, <) or with o-minimal structures, hold for sets and functions definable in ℜ. For example, images of closed bounded definable sets under continuous definable maps are closed and bounded (Proposition 1.10).Of particular interest is the case that ℜ expands an ordered group, that is, ℜ defines a binary operation * such that (R, <, *) is an ordered group. Then (R, *) is abelian and divisible (Proposition 2.2). Continuous nontrivial definable endo-morphisms of (R, *) are surjective and strictly monotone, and monotone nontrivial definable endomorphisms of (R, *) are strictly monotone, continuous and surjective (Proposition 2.4). There is a generalization of the familiar result that every proper noncyclic subgroup of (ℝ, +) is dense and codense in ℝ: IfGis a proper nontrivial subgroup of (R, *) definable in ℜ, then eitherGis dense and codense inR, orGcontains an elementusuch that (R, <, *,e, u, G) is elementarily equivalent to (ℚ, <, +, 0, 1, ℤ), whereedenotes the identity element of (R, *) (Theorem 2.3).Here is an outline of this paper. First, we deal with some basic topological results. We then assume that ℜ expands an ordered group and establish the results mentioned in the preceding paragraph. Some examples are then given, followed by a brief discussion of analytic results and possible limitations. In an appendix, an explicit axiomatization (used in the proof of Theorem 2.3) is given for the complete theory of the structure (ℚ, <, +, 0, 1, ℤ).

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Reference6 articles.

1. Tame Topology and O-minimal Structures

2. Definable sets in ordered structures. I

3. Definable Compactness and Definable Subgroups of o-Minimal Groups

4. Expansions of the real line by open sets: o-minimality and open cores;Miller;Fundamenta Mathematicae,1999

5. Dense pairs of o-minimal structures;van den Dries;Fundamenta Mathematicae,1998

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3