Abstract
Modal logic received its modern impetus from the work of Lewis and Langford [10]. In recent years, however, their axiomatic approach, aided by somewhat ad hoc matrices for distinguishing different modal systems, has been supplemented by other techniques. Two of the most profound of these were, first, the algebraic methods employed by McKinsey and Tarski (see [11] and [12]) and, second, the semantic method of Kripke (see [5] and [6]); and there have been others. The aim of the present series of papers is to afford a synthesis of these methods. Thus, though new results are given, the interest lies rather in revealing interconnexions between familiar results and in providing a general framework for future research. In general, we show that semantic completeness results of the Kripke kind can be deduced from the algebraic results by means of one central theorem (Theorem 21).
Publisher
Cambridge University Press (CUP)
Cited by
110 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献