Compactly expandable models and stability

Author:

Casanovas Enrique

Abstract

In analogy to ω-logic, one defines M-logic for an arbitrary structure M (see [5],[6]). In M-logic only those structures are considered in which a special part, determined by a fixed unary predicate, is isomorphic to M. Let L be the similarity type of M and T its complete theory. We say that M-logic is κ-compact if it satisfies the compactness theorem for sets of < κ sentences. In this paper we introduce the related notion of compactness for expandability: a model M is κ-compactly expandable if for every extension T′T of cardinality < κ, if every finite subset of T′ can be satisfied in an expansion of M, then T′ can also be satisfied in an expansion of M. Moreover, M is compactly expandable if it is ∥M+-compactly expandable. It turns out that M-logic is κ-compact iff M is κ-compactly expandable.Whereas for first-order logic consistency and finite satisfiability are the same, consistency with T and finite satisfiability in M are, in general, no longer the same thing. We call the model Mκ-expandable if every consistent extension T′ ⊇ T of cardinality < κ can be satisfied in an expansion of M. We say that M is expandable if it is ∥M+-expandable. Here we study the relationship between saturation, expandability and compactness for expandability. There is a close parallelism between our results about compactly expandable models and some theorems of S. Shelah about expandable models, which are in fact expressed in terms of categoricity of PC-classes (see [7, Th. VI.5.3, VI.5.4 and VI.5.5]). Our results could be obtained directly from these theorems of Shelah if expandability and compactness for expandability were the same notion.

Publisher

Cambridge University Press (CUP)

Subject

Logic,Philosophy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. UNIVERSAL THEORIES AND COMPACTLY EXPANDABLE MODELS;The Journal of Symbolic Logic;2019-03-06

2. |T |+-resplendent models and the Lascar group;MLQ;2005-11

3. Transfering saturation, the finite cover property, and stability;Journal of Symbolic Logic;1999-06

4. A test for expandability;Archive for Mathematical Logic;1998-06-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3