Abstract
In 1965, during the first All-Union Symposium on Group Theory, Kargapolov presented the following two problems: (a) describe the universal theory of free nilpotent groups of class m; (b) describe the universal theory of free groups (see [18, 1.28 and 1.27]). The first of these problems is still open and it is known [25] that a positive solution of this problem for an m ≤ 2 should imply the decidability of the universal theory of the field of the rationals (this last problem is equivalent to Hilbert's tenth problem for the field of the rationals which is a difficult open problem; see [17] and [20] for discussions on this problem). Regarding the second problem, Makanin proved in 1985 that a free group has a decidable universal theory (see [15] for stronger results), however, the problem of deriving an explicit description of the universal theory of free groups is open. To try to solve this problem Remeslennikov gave different characterization of finitely generated groups with the same universal theory as a noncyclic free group (see [21] and [22] and also [11]). Recently, the author proved in [8] that a free metabelian group has a decidable universal theory, but the proof of [8] does not give an explicit description of the universal theory of free metabelian groups.
Publisher
Cambridge University Press (CUP)
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献